首页> 外文OA文献 >Proteolytic Release of the Intramolecular Chaperone Domain Confers Processivity to Endosialidase F*S⃞
【2h】

Proteolytic Release of the Intramolecular Chaperone Domain Confers Processivity to Endosialidase F*S⃞

机译:分子内分子伴侣域的蛋白水解释放 内酰胺酶的合成能力 F *S⃞

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Endosialidases (endoNs), as identified so far, are tailspike proteins of bacteriophages that specifically bind and degrade the α2,8-linked polysialic acid (polySia) capsules of their hosts. The crystal structure solved for the catalytic domain of endoN from coliphage K1F (endoNF) revealed a functional trimer. Folding of the catalytic trimer is mediated by an intramolecular C-terminal chaperone domain. Release of the chaperone from the folded protein confers kinetic stability to endoNF. In mutant c(S), the replacement of serine 911 by alanine prevents proteolysis and generates an enzyme that varies in activity from wild type. Using soluble polySia as substrate a 3-times higher activity was detected while evaluation with immobilized polySia revealed a 190-fold reduced activity. Importantly, activity of c(S) did not differ from wild type with tetrameric sialic acid, the minimal endoNF substrate. Furthermore, we show that the presence of the chaperone domain in c(S) destabilizes binding to polySia in a similar way as did selective disruption of a polySia binding site in the stalk domain. The improved catalytic efficiency toward soluble polySia observed in these mutants can be explained by higher dissociation and association probabilities, whereas inversely, an impaired processivity was found. The fact that endoNF is a processive enzyme introduces a new molecular basis to explain capsule degradation by bacteriophages, which until now has been regarded as a result of cooperative interaction of tailspike proteins. Moreover, knowing that release of the chaperone domain confers kinetic stability and processivity, conservation of the proteolytic process can be explained by its importance in phage evolution.
机译:到目前为止,Endosialidases(endoNs)是噬菌体的尾钉蛋白,可特异性结合并降解其宿主的α2,8连接的聚唾液酸(polySia)胶囊。从大肠杆菌噬菌体K1F(endoNF)解析endoN催化结构域的晶体结构显示了三聚体功能。催化三聚体的折叠是由分子内C-末端伴侣结构域介导的。分子伴侣从折叠的蛋白质中释放出来,赋予了endoNF动力学稳定性。在突变体c(S)中,丙氨酸替代丝氨酸911可防止蛋白水解并产生一种酶活性与野生型不同的酶。使用可溶性polySia作为底物,检测到3倍的高活性,而固定化polySia的评估显示活性降低了190倍。重要的是,c(S)的活性与四聚体唾液酸(最小的endNF底物)的野生型没有区别。此外,我们显示c(S)中伴侣域的存在以与选择性破坏茎域中polySia结合位点相似的方式破坏了与polySia的结合。在这些突变体中观察到的对可溶性polySia的提高的催化效率可以通过较高的解离和缔合概率来解释,而相反地,发现了合成能力受损。 endoNF是一种过程性酶这一事实引入了新的分子基础,以解释由噬菌体引起的胶囊降解,迄今为止,这一直被认为是尾钉蛋白协同相互作用的结果。此外,已知释放伴侣分子赋予了动力学稳定性和可合成性,蛋白水解过程的保守性可以通过其在噬菌体进化中的重要性来解释。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号